Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish.
نویسندگان
چکیده
Gymnotiform electric fish generate distinct communicatory signals by modulating the rate of their electric organ discharges (EODs). Each EOD is triggered by a command pulse from the medullary pacemaker nucleus (PN), which contains pacemaker cells and relay cells. The firing rate of this nucleus is modulated by inputs from the diencephalic prepacemaker nucleus (PPN). The NMDA receptor blocker APV and the kainate/quisqualate receptor blocker CNQX, administered to the PN, suppress different types of modulations, indicating that different classes of glutamate receptors mediate the generation of different modulations. A comparison of the 2 genera, Hypopomus and Eigenmannia, reveals that sustained modulations, such as smooth rises in the rate of pacemaker cell firing and the selective silencing of the relay cells (only observed in Hypopomus), are mediated by NMDA receptors, whereas the brief and rapid acceleration, called "chirp" or "decrement burst," is mediated by kainate/quisqualate receptors. Application of the GABA blocker bicuculline reveals that the 2 genera differ in the mechanism by which they slow the firing rate of their pacemaker. Whereas Hypopomus uses GABAergic inhibition to slow down and ultimately silence its pacemaker cells, Eigenmannia reduces tonic, APV-sensitive excitation originating from its PPN and lacks GABAergic inhibition in the PN.
منابع مشابه
Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors.
Electric fish generate different types of abrupt modulations of their electric organ discharge (EOD) rhythm to convey specific social signals. Intracellular recordings were made from neurons of the medullary pacemaker nucleus, which generates and transmits the rhythm that drives the EOD, to study the neuronal basis of two such modulations of the regular EOD rhythm, sudden accelerations, and abr...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملSegregation of behavior-specific synaptic inputs to a vertebrate neuronal oscillator.
Although essential for understanding the mechanisms underlying sensorimotor integration and motor control of behaviors, very little is known about the degree to which different behaviors share neural elements of the sensorimotor command chain by which they are controlled. Here, we provide, to our knowledge, the first direct physiological evidence that various modulatory premotor inputs to a ver...
متن کاملImmunolocalization of NMDA receptors in the central nervous system of weakly electric fish: functional implications for the modulation of a neuronal oscillator.
Using a monoclonal antibody raised against the R1 subunit of the rat NMDA receptor, we mapped the distribution of NMDA receptors in the brains of three genera of electric fish. On Western blots, the antibody recognized a glycoprotein of approximately 105 kDa throughout the CNS. On tissue sections, it strongly labeled a number of neuronal somata and dendrites in the medulla, with weaker immunore...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 12 شماره
صفحات -
تاریخ انتشار 1990